STUDENT NAME:

Linear Algebra Graduate Comprehensive Exam, May 2017 Worcester Polytechnic Institute

Work out 6 of the following problems

Write down detailed proofs of every statement you make.

No Books. No Notes. No calculators.

- 1. Let $\mathbb{R}^{n \times n}$ be the set of n by n real matrices, equipped by the metric given by any norm.
 - (i). Show that the subset of diagonalizable matrices of $\mathbb{R}^{n\times n}$ is dense.
 - (ii). Is the set of diagonalizable matrices of $\mathbb{R}^{n\times n}$ open? (Prove or disprove).
- 2. Let A and B be Hermitian $n \times n$ complex matrices.
 - (i). If A is positive definite, show that there exists an invertible matrix P such that $P^*AP = I$ and P^*BP is diagonal.
 - (ii). If A is positive definite and B is positive semidefinite, show that

$$\det(A+B) \ge \det(A)$$
.

- 3. Let $V = \mathbb{R}^5$ and T is a linear transformation from V to itself defined by T(a,b,c,d,e) = (2a,2b,2c+d,a+2d,b+2e).
 - (i). Find the characteristic polynomial and minimal polynomial of T.
 - (ii). Determine a basis of \mathbb{R}^5 consisting of eigenvectors and generalized eigenvectors of T.
 - (iii). Find the Jordan form of T with respect to your basis.
- 4. Fredholm Alternative: Let A be an $m \times n$ real matrix and $b \in \mathbb{R}^m$. Show that exactly one of the following systems has a solution:
 - (i). Ax = b
 - (ii). $A^T y = 0, \quad y^T b \neq 0.$
- 5. Let U and W be subspaces of the finite-dimensional inner product space V
 - (i). Prove that $U^{\perp} \cap W^{\perp} = (U + W)^{\perp}$.
 - (ii). Prove that

$$\dim(W) - \dim(U \cap W) = \dim(U^{\perp}) - \dim(U^{\perp} \cap W^{\perp}).$$

- 6. Find a basis for the intersection of the subspace of \mathbb{R}^4 spanned by (1,1,0,0), (0,1,1,0), (0,0,1,1) and the subspace spanned by (1,0,t,0), (0,1,0,t), where t is given.
- 7. Let A and B be $n \times n$ complex matrices such that AB = BA. Show that if A has n distinct eigenvalues, then A, B and AB are all diagonalizable.

1